If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5x^2+12x+3=0
a = -5; b = 12; c = +3;
Δ = b2-4ac
Δ = 122-4·(-5)·3
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{51}}{2*-5}=\frac{-12-2\sqrt{51}}{-10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{51}}{2*-5}=\frac{-12+2\sqrt{51}}{-10} $
| p6+ 49=56 | | 5^(x-10)=25^3x | | –24=r/7+-28 | | –15+–4b=–63 | | y=(6599)(1-0.12)2.5 | | 0=-3x^2-24x+170 | | 3-2v=19 | | 5x^2-28=13x | | A=675(1+0.06/12)12x | | -53=6v-5 | | Y=-50+5x | | 16=y/5+7 | | 1/2-4/n=1/4 | | 5d−28=22 | | z/8+-18=-14 | | 16=4x–8 | | 114+9x+33=180 | | −3=−3p+7 | | 16=1/2(6+2x)12 | | 57=2+5b | | 6d+4=88 | | 14=t/2+10 | | x+6.3=13.8 | | g/9+93=98 | | 11.48=k-5.25 | | 6q=–10+7q | | -x+15=-3x-1 | | |9x+7|+31=65 | | 4n+5=n+28 | | 5c+11=46 | | 4.8y=17.93.2 | | e=2.X-10 |